Universidad Técnica Federico Santa María Departamento de Matemática Ingeniería Civil Matemática

Certamen 3 (pauta) - Análisis I (MAT225)

Profesor: Pedro Gajardo Ayudante: Simón Masnú Fecha: 7 de septiembre 2019

Pregunta 1

Sea $(X, \langle \cdot, \cdot \rangle)$ un espacio de Hilbert y $f: X \longrightarrow \mathbb{R}$ una función continuamente diferenciable. Para $x \in X$, sea $\nabla f(x) \in X$ el elemento tal que

$$Df(x)(v) = \langle \nabla f(x), v \rangle \quad \forall \ v \in X.$$
 (1)

Suponga que la función $\nabla f: X \longrightarrow X$ es Lipschitz, es decir, existe $L \geq 0$ tal que

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\| \quad \forall x, y \in X,$$

donde $\|\cdot\|$ es la norma en X que define el producto interno $\langle\cdot,\cdot\rangle$.

1. Para x, y en X, defina la función $\phi_{x,y} : \mathbb{R} \longrightarrow \mathbb{R}$ dada por $\phi_{x,y}(t) = f(x + t(y - x))$. Pruebe que $\phi_{x,y}$ es continuamente diferenciable y determine $\phi'_{x,y}(t)$.

Respuesta: Para $t \in \mathbb{R}$ se tendrá que

$$\phi'_{x,y}(t) = \lim_{s \to 0} \frac{\phi_{x,y}(t+s) - \phi_{x,y}(t)}{s} = \lim_{s \to 0} \frac{f(x+(t+s)(y-x)) - f(x+t(y-x))}{s} = \lim_{s \to 0} \frac{f(x+t(y-x)+s(y-x)) - f(x+t(y-x))}{s} = Df(x+t(y-x);(y-x)).$$

Como f es diferenciable, se tiene

$$Df(x + t(y - x); (y - x)) = Df(x + t(y - x))(y - x),$$

donde $Df(x+t(y-x)) \in \mathcal{L}(X,\mathbb{R}) = X^*$. Por lo tanto, de la igualdad (1), se deduce

$$\phi'_{x,y}(t) = Df(x + t(y - x))(y - x) = \langle \nabla f(x + t(y - x)), y - x \rangle \qquad \forall \ t \in \mathbb{R}.$$

2. Para x, y en X, y haciendo utilización de $\phi_{x,y}(t)$ y $\phi'_{x,y}(t)$ (de la pregunta anterior), demuestre que

$$f(y) - f(x) = \langle \nabla f(x), y - x \rangle + \int_0^1 \langle \nabla f(x + t(y - x)) - \nabla f(x), y - x \rangle dt.$$

Respuesta: Para x, y en X, definiendo $\phi_{x,y}(t)$ y obteniendo $\phi'_{x,y}(t)$ de la pregunta anterior, por el teorema fundamenta del cálculo se tendrá que

$$\phi_{x,y}(1) - \phi_{x,y}(0) = \int_0^1 \phi'_{x,y}(t)dt,$$

es decir

$$f(y) - f(x) = \int_0^1 \langle \nabla f(x + t(y - x)), y - x \rangle dt.$$

Sumando y restando $\langle \nabla f(x), y - x \rangle$ al lado derecho, obtenemos

$$f(y) - f(x) = \langle \nabla f(x), y - x \rangle + \int_0^1 \langle \nabla f(x + t(y - x)) - \nabla f(x), y - x \rangle dt.$$
 (2)

3. Demuestre que

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||x - y||^2 \quad \forall x, y \in X.$$

Respuesta: Para cualquier x, y en X, de la igualdad (2) se obtendrá (Cauchy-Schwarz)

$$f(y) - f(x) \le \langle \nabla f(x), y - x \rangle + \int_0^1 \|\nabla f(x + t(y - x)) - \nabla f(x)\| \|y - x\| dt.$$

Dado que $\nabla f: X \longrightarrow X$ es Lipschitz con constante L, obtenemos

$$f(y) - f(x) \le \langle \nabla f(x), y - x \rangle + \int_0^1 tL \|y - x\|^2 dt = \langle \nabla f(x), y - x \rangle + \frac{L}{2} \|x - y\|^2.$$

Pregunta 2

Sean $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ dos espacios vectoriales normados y $f: A \subseteq X \longrightarrow Y$ una función continuamente diferenciable, donde $\emptyset \neq A \subseteq X$ es un conjunto abierto y conexo¹.

Suponga que Df(x) = 0 para todo x en A.

1. Pruebe que para todo $x \in A$ y $\delta > 0$ tal que $B(x, \delta) \subseteq A$, se tiene que f(z) = f(x) para todo $z \in B(x, \delta)$.

Respuesta: Sea $x \in A$ y $\delta > 0$ tal que $B(x,\delta) \subseteq A$, que sabemos existe pues A es un abierto. Para todo $z \in B(x,\delta)$ se tendrá que el segmento $[x,z] \subseteq B(x,\delta)$, pues $B(x,\delta)$ es convexo. Por lo tanto, gracias al teorema de los incrementos finitos, obtenemos

$$||f(z) - f(x)||_Y \le \left(\sup_{w \in (x,z)} ||Df(w)||_{\mathcal{L}(X,Y)}\right) ||z - x||_X = 0,$$

donde la última igualdad se obtiene debido a que Df(w) = 0 para todo w en A. De la desigualdad de más arriba deducimos finalmente que f(z) = f(x) para todo $z \in B(x, \delta)$.

2. Para $x_0 \in A$ defina los conjuntos

$$\theta_1 = \{x \in A \mid f(x) = f(x_0)\}$$
 y $\theta_2 = \{x \in A \mid f(x) \neq f(x_0)\}$

y demuestre que son abiertos.

Respuesta: Para $x_0 \in A$ se obtendrá de manera directa que θ_2 es abierto, pues

$$\theta_2 = f^{-1}(\{f(x_0)\}^c),$$

es decir, θ_2 es la preimagen por f (que es continua) del abierto $\{f(x_0)\}^c$ (complemento de $\{f(x_0)\}$). Probemos que θ_1 es abierto. Para $x \in \theta_1$ (i.e., $f(x) = f(x_0)$) sea $\delta > 0$ tal que $B(x,\delta) \subseteq A$, que sabemos existe pues A es un abierto. Por la pregunta anterior, sabemos que $f(z) = f(x) = f(x_0)$ para todo $z \in B(x,\delta)$. Por lo tanto $B(x,\delta) \subseteq \theta_1$, probando así que θ_1 es un conjunto abierto.

¹Un conjunto $A \subseteq X$ es conexo, si no existen dos abiertos θ_1 y θ_2 de X distintos de vacío, tales que $\theta_1 \cap A \neq \emptyset$, $\theta_2 \cap A \neq \emptyset$, $\theta_1 \cap \theta_2 = \emptyset$ y $A \subseteq \theta_1 \cup \theta_2$.

3. Concluya que f es una función constante.

Respuesta: Supongamos que f no es constante, es decir, existe $x_0 \in A$ y $z_0 \in A$ tales que $f(x_0) \neq f(z_0)$. Para x_0 definimos los conjuntos θ_1 y θ_2 de la pregunta anterior. Estos serán conjuntos abiertos no vacíos, pues $x_0 \in \theta_1$ y $z_0 \in \theta_2$. Evidentemente se tendrá que $\theta_1 \cap A \neq \emptyset$, $\theta_2 \cap A \neq \emptyset$, $\theta_1 \cap \theta_2 = \emptyset$ y $A \subseteq \theta_1 \cup \theta_2$. Esto contradice la conexidad de A, concluyendo así que f es una función constante.

Pregunta 3

Sea $(X, \|\cdot\|)$ un espacio vectorial normado y $(X^*, \|\cdot\|_*)$ su espacio dual, dotado de la norma

$$\|\ell\|_* = \sup_{x \in X \setminus \{0\}} \frac{\ell(x)}{\|x\|} = \sup_{x \in B[0,1]} \ell(x) \quad \forall \ \ell \in X^*,$$

donde B[0,1] es la bola cerrada de centro 0 y radio unitario en X.

Considere la siguiente familia de conjuntos

$$B := \{ \ell^{-1}(I) \subseteq X \mid \ell \in X^*, \ I \subseteq \mathbb{R} \text{ abierto } \},$$

y defina $\mathcal{T} \subseteq \mathcal{P}(X)$ como la colección de todos los conjuntos que se obtienen como uniones de intersecciones finitas de elementos en B.

1. Pruebe que (X, \mathcal{T}) es un espacio topológico y que si $\mathcal{T}_{\|\cdot\|}$ es la topología que induce la norma $\|\cdot\|$, entonces $\mathcal{T} \subseteq \mathcal{T}_{\|\cdot\|}$, es decir, \mathcal{T} es más débil que $\mathcal{T}_{\|\cdot\|}$.

Respuesta: Probemos que \mathcal{T} es una topología:

- Si consideramos $\ell \equiv 0$ (la función lineal nula), se tiene que $\ell \in X^*$ y $X = \ell^{-1}((-1,1))$, por lo tanto X está en B y, en consecuencia, X está en T. El conjunto vacío también estará en B pues para cualquier $\ell \in X^*$ se tendrá que $\emptyset = \ell^{-1}(\emptyset)$.
- Probaremos que la intersección de dos conjuntos en \mathcal{T} está en \mathcal{T} de donde se deducirá que toda intersección finita de conjuntos en \mathcal{T} estará en \mathcal{T} . Sean θ_1 y θ_2 dos conjuntos en \mathcal{T} . Para j = 1, 2, el conjunto θ_j se puede escribir como

$$\theta_j = \bigcup_{\alpha_j \in \Lambda_j} W_{\alpha_j} = \bigcup_{\alpha_j \in \Lambda_j} \bigcap_{\beta_{\alpha_j} \in \Omega_{\alpha_j}} B_{\beta_{\alpha_j}},$$

donde los conjuntos $B_{\beta_{\alpha_j}}$ están en B y Ω_{α_j} es un conjunto finito de índices para todo $\alpha_j \in \Lambda_j$ y j=1,2. En consecuencia,

$$\theta_1 \cap \theta_2 = \left(\bigcup_{\alpha_1 \in \Lambda_1} \bigcap_{\beta_{\alpha_1} \in \Omega_{\alpha_1}} B_{\beta_{\alpha_1}}\right) \cap \left(\bigcup_{\alpha_2 \in \Lambda_2} \bigcap_{\beta_{\alpha_2} \in \Omega_{\alpha_2}} B_{\beta_{\alpha_2}}\right) =$$

$$= \bigcup_{\alpha_1 \in \Lambda_1} \bigcup_{\alpha_2 \in \Lambda_2} \bigcap_{\beta_{\alpha_1} \in \Omega_{\alpha_1}} \bigcap_{\beta_{\alpha_2} \in \Omega_{\alpha_2}} \left(B_{\beta_{\alpha_1}} \cap B_{\beta_{\alpha_2}}\right).$$

Como para cada $(\alpha_1, \alpha_2) \in \Lambda_1 \times \Lambda_2$ se tiene que

$$\bigcap_{\beta_{\alpha_1} \in \Omega_{\alpha_1}} \bigcap_{\beta_{\alpha_2} \in \Omega_{\alpha_2}} \left(B_{\beta_{\alpha_1}} \cap B_{\beta_{\alpha_2}} \right)$$

es una intersección finita de elementos en B, concluimos que $\theta_1 \cap \theta_2$ se escribe como una unión de intersecciones finitas de elementos en B, por lo tanto $\theta_1 \cap \theta_2$ está en \mathcal{T} .

■ Sea $\{\theta_{\alpha}\}_{{\alpha}\in\Lambda}$ una familia de conjuntos en \mathcal{T} . Cada θ_{α} es una unión de intersecciones finitas de elementos en B, por lo tanto, el conjunto

$$W := \bigcup_{\alpha \in \Lambda} \theta_{\alpha}$$

será una unión de intersecciones finitas de elementos en B, de donde se concluye que $W \in \mathcal{T}$.

Concluimos entonces que \mathcal{T} es una topología y, por lo tanto, (X,\mathcal{T}) es un espacio topológico.

Para probar $\mathcal{T} \subseteq \mathcal{T}_{\|\cdot\|}$, como ya sabemos que \mathcal{T} es una topología, es suficiente mostrar que $B \subseteq \mathcal{T}_{\|\cdot\|}$.

Sea $\theta \in B$, es decir, existe un abierto $I \subseteq \mathbb{R}$ y $\ell \in X^*$ tales que $\theta = \ell^{-1}(I)$. El hecho que $\ell \in X^*$ quiere decir que $\ell : (X, \mathcal{T}_{\|\cdot\|}) \longrightarrow \mathbb{R}$ es continua, por lo tanto $\theta = \ell^{-1}(I) \in \mathcal{T}_{\|\cdot\|}$, probando así que $B \subseteq \mathcal{T}_{\|\cdot\|}$ y, en consecuencia, $\mathcal{T} \subseteq \mathcal{T}_{\|\cdot\|}$.

2. Para todo $\ell \in X^*$ pruebe que $\ell : (X, \mathcal{T}) \longrightarrow \mathbb{R}$ es continua.

Respuesta: Dado $\ell \in X^*$, se tiene que para todo abierto $I \subseteq \mathbb{R}$, el conjunto $\ell^{-1}(I)$ está en B y, por lo tanto, está en \mathcal{T} , probando así la continuidad de $\ell : (X, \mathcal{T}) \longrightarrow \mathbb{R}$.

3. Demuestre que (X,\mathcal{T}) es un espacio topológico separado. Para ello puede utilizar la igualdad

$$||x|| = \sup_{\ell \in X^* \setminus \{0\}} \frac{\ell(x)}{\|\ell\|_*} \qquad \forall \ x \in X, \tag{3}$$

demostrada en el certamen anterior.

Respuesta: Sean $x, y \in X$ distintos. Entonces, ||x - y|| > 0. De la expresión de la norma dada por (3) deducimos que debe existir $\ell \in X^*$ tal que $\ell(x - y) \neq 0$. Definamos

$$\varepsilon := \frac{|\ell(x-y)|}{3} > 0$$

y los abiertos en \mathbb{R} dados por

$$I_1 := (\ell(x) - \varepsilon, \ell(x) + \varepsilon)$$
 y $I_2 := (\ell(y) - \varepsilon, \ell(y) + \varepsilon)$.

Claramente se tendrá que $I_1 \cap I_2 = \emptyset$. Definiendo $\theta_1 = \ell^{-1}(I_1)$ y $\theta_2 = \ell^{-1}(I_2)$, conjuntos que están en \mathcal{T} , concluimos que $\theta_1 \cap \theta_2 = \emptyset$ y que $x \in \theta_1$ y $y \in \theta_2$, por lo tanto (X, \mathcal{T}) es un espacio topológico separado.

Tiempo: 180 minutos.