

Universidad Técnica Federico Santa María Departamento de Matemática Ingeniería Civil Matemática

Tarea 3 - Análisis I (MAT225 - MAT401)

Profesores: Isabel Flores y Pedro Gajardo **Ayudantes:** Franco Cerda y Cristian Vega **Fecha de entrega:** 24 de agosto 2018

1. Sea $(X, \langle \cdot, \cdot \rangle)$ un espacio de Hilbert y $\ell \in \mathcal{L}(X) = \mathcal{L}(X, X)$ un operador lineal continuo tal que

$$\langle \ell(x),y\rangle = \langle x,\ell(y)\rangle \qquad \forall \ x, \ y\in X.$$

Considere las funciones $\phi: X \longrightarrow \mathbb{R}$ y $f: X \setminus \{0\} \longrightarrow \mathbb{R}$ definidas por

$$\phi(x) = \langle \ell(x), x \rangle$$
 y $f(x) = \frac{\langle \ell(x), x \rangle}{\langle x, x \rangle} = \frac{\phi(x)}{\langle x, x \rangle}$.

- a) Muestre que $\phi: X \longrightarrow \mathbb{R}$ es diferenciable y calcule su diferencial.
- b) Pruebe que $f: X \setminus \{0\} \longrightarrow \mathbb{R}$ es diferenciable y calcule su diferencial.
- c) Demuestre que un elemento no nulo $\bar{x} \in X$ satisface $Df(\bar{x}) = 0$ si y solamente si, existe $\lambda \in \mathbb{R}$ tal que $\ell(\bar{x}) = \lambda \bar{x}$, es decir, \bar{x} es un vector propio del operador ℓ .
- 2. Sea $X = \mathcal{C}([0,1])$ el espacio de las funciones reales continuas definidas sobre el intervalo [0,1], dotado de la norma del supremo. Considere la aplicación $\psi: X \longrightarrow X$ definida por

$$\psi(f)(t) = \sin(f(t)) \qquad \forall \ t \in [0, 1].$$

Demuestre que $\psi: X \longrightarrow X$ es diferenciable en todo elemento $f \in X$ y calcule su diferencial.

3. Sea $(X, \|\cdot\|)$ un espacio de Banach y $I_X: X \longrightarrow X$ la función identidad en X. En el espacio $\mathcal{L}(X)$ considere la bola abierta $B = B(I_X, 1/3)$ y la aplicación $f: B \longrightarrow \mathcal{L}(X)$ definida por

$$f(\ell) = \ell^3 := \ell \circ \ell \circ \ell \qquad \forall \ \ell \in \mathcal{L}(X).$$

- a) Demuestre que $f: B \longrightarrow \mathcal{L}(X)$ es continuamente diferenciable y calcule su diferencial.
- b) Si $\mathcal{I}: \mathcal{L}(X) \longrightarrow \mathcal{L}(X)$ es la función identidad en $\mathcal{L}(X)$, pruebe que para $\ell \in B$ se tiene

$$||Df(\ell) - 3\mathcal{I}|| \le 6||\ell - I_X|| + 3||\ell - I_X||^2$$

y deduzca que la aplicación $Df(\ell)$ es biyectiva para todo operador $\ell \in B$.

- c) Pruebe que para todo $\ell \in B$ existe $\varepsilon > 0$ tal que $f: B(\ell, \varepsilon) \longrightarrow f(B(\ell, \varepsilon))$ es una función biyectiva.
- 4. Sean $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ dos espacios de Banach y $f: X \longrightarrow Y$ una aplicación de clase \mathcal{C}^2 tal que

$$f(tx) = t^2 f(x) \qquad \forall \ x \in X, \ \forall \ t \in \mathbb{R}.$$

Mostrar que para todo $x \in X$ se tiene $D^2 f(0)(x)(x) = 2f(x)$.

5. Sea (X,τ) un espacio topológico y $f:X\longrightarrow \mathbb{R}$ una función. Demuestre que si para todo $\lambda\in\mathbb{R}$ los conjuntos

$$S_{\lambda} := \{ x \in X \mid f(x) < \lambda \} \quad \text{y} \quad U_{\lambda} := \{ x \in X \mid f(x) > \lambda \}$$

son abiertos, entonces f es continua.

- 6. Sean (X, τ_X) y (Y, τ_Y) dos espacios topológicos. Se dice que una función $f: X \longrightarrow Y$ es una aplicación abierta, si para todo $\theta \subset X$ abierto se tiene que $f(\theta)$ as un conjunto abierto de Y. Si $\{X_{\alpha}\}_{{\alpha} \in \Lambda}$ es una familia de espacios topológicos, demuestre que para todo ${\alpha} \in \Lambda$, la proyección $P_{\alpha}: \Pi_{{\alpha}' \in \Lambda} X_{{\alpha}'} \longrightarrow X_{\alpha}$ es una aplicación abierta.
- 7. Sea (X,τ) un espacio topológico separado (o de Hausdorff) y $f:X\longrightarrow X$ una función continua. Demuestre que el conjunto

$$C = \{x \in X \mid f(x) = x\}$$

es cerrado.

8. Para (X, τ) un espacio topológico, pruebe que es separado (o de Hausdorff) si y solamente si, el conjunto $\Delta \subset X \times X$ definido por

$$\Delta := \{(x, x) \in X \times X \mid x \in X\}$$

es cerrado en $X \times X$.