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This paper is a contribution to the theory of monotone operators in topological 
vector spaces. On the one hand, we provide new results concerning topological and 
geometric properties of monotone operators satisfying mild continuity assumptions. 
In particular, we give fairly general conditions on the operator to become single-
valued, to be closed and maximal. A fundamental tool is a generalization of the 
well-known Minty’s Lemma that is interesting in its own right and, surprisingly, 
remains true for general topological vector spaces. As a consequence of Minty’s, 
we obtain an extension of a rather remarkable theorem of Kato for multi-valued 
mappings defined on general locally convex spaces.

© 2015 Elsevier Inc. All rights reserved.

0. Introduction

Monotone operators have been extensively studied for the last fifty years in terms of their structural 
properties [7,8,15,17–19,25,26,28], their connection with certain dynamical systems [4,5,10,24,27] and the 
solution of functional equations [1,9,20,22,23] arising, for instance, in convex optimization and equilibrium 
problems, partial differential equations and variational inequalities. A recent survey on the history of mono-
tone operators has been carried out by Borwein [3].

In the last fifty years, the study of monotone operators has been mostly developed for reflexive Banach 
spaces, and especially for Hilbert spaces. However, many equilibrium and optimization problems escape 
this setting. For instance, even the most classical optimal control problems, where the cost functional is 
convex and the dynamics is given by a system of linear ordinary differential equations, the natural functional 
setting is the nonreflexive space of continuous (or continuously differentiable) functions defined on a given 
interval. As far as we know, this class of problems has not been addressed using the monotone operator 
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theory approach. In fact, neither from a theoretical point of view, nor from the numerical one. The present 
research attempts to set the basis of the theoretical background − in terms of some topological, geometrical 
and algebraic properties − and laying the foundations for future applications. More precisely, we study 
various properties of monotone operators defined on topological vector spaces, as well as locally convex 
spaces, under suitable continuity conditions.

The paper is organized as follows: In Section 1 we present an extension of Minty’s Lemma (see [19,20,2,
9,11]) to topological vector spaces, and more general operators and domains. This result, namely Lemma 1, 
is the key to establishing several new properties of monotone operators in locally convex spaces. Section 2
contains conditions under which a monotone operator is single-valued and the points of its domain where 
this property holds. Next, in Section 3, we study maximality and D-maximality. The main results of this 
section extend a remarkable result of Kato to locally convex spaces (see Theorem 11 and also Corollary 13). 
Section 4 contains several results allowing to better understand the relationship between maximality and 
different types of continuity. Finally, in Section 5, we provide some closedness results concerning both the 
values and the graph of the operator.

We should mention that throughout this work, X will represent a real vector space.

1. An extension of Minty’s Lemma

Let X be a topological vector space with topological dual X∗ and denote by 〈x∗, x〉 the action of x∗ ∈ X∗

on x ∈ X. For the purpose of this paper, an operator A defined on X with set-values in X∗ shall be denoted 
by A : X → 2X∗ . Its effective domain is the set

D(A) = {x ∈ X : Ax �= ∅}.

An operator A : X → 2X∗ is monotone if

〈x∗ − y∗, x− y〉 ≥ 0

for all x, y ∈ D(A) and all x∗ ∈ Ax, y∗ ∈ Ay.
An operator A : X → 2X∗ is lower-demicontinuous if for every z0 ∈ D(A) and every weak∗ open set O

in X∗ with Az0 ∩ O �= ∅, there exists a neighborhood U of z0 such that

Az ∩ O �= ∅ for every z ∈ D(A) ∩ U.

The operator A : X → 2X∗ is upper-demicontinuous if for every z0 ∈ D(A) and every weak∗ open set 
W ⊂ X∗ with Az0 ⊂ W , there exists a neighborhood U of z0 such that

Az ⊂ W for every z ∈ U.

In addition, A is lower-demicontinuous (resp. upper-demicontinuous) on finite dimensional subspaces
if the restriction of A to D(A) ∩ Y is lower-demicontinuous (resp. upper-demicontinuous) for any finite 
dimensional subspace Y of X. Finally, A is lower-hemicontinuous (resp. upper-hemicontinuous) if it is 
lower-demicontinuous (resp. upper-demicontinuous) on line segments. For the single-valued case, the def-
initions mentioned above coincide with the concepts of demicontinuity and hemicontinuity introduced by 
Minty [20] and Browder [6].

As we shall see, lower-hemicontinuous monotone operators have interesting topological and geometrical 
properties, even in topological vector spaces. We begin by establishing an extension of a key result due to 
Minty (see Lemma 1), that is interesting in its own right.
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Let D ⊂ X be a nonempty set. A point z ∈ X is densely sequentially approachable within D if there 
exists a subset Dz ⊂ X, whose closure contains D, such that for all x ∈ Dz, there exists a sequence of 
positive numbers (tn) ⊂ R+, decreasing to 0 with

z + tn(x− z) ∈ D for all n ∈ N.

This notion is weaker than one of being surrounded densely by D, introduced by Minty in [20]. We denote 
by SA(D) ⊂ D the set of points of D that are densely sequentially approachable within D. The set D is 
densely sequentially approachable (SA, for short) if D = SA(D).

Next, we give some examples of this new notion.

(1) Clearly, int(D) ⊂ SA(D). As a consequence, every open set is SA. The same is true for (algebraically) 
relatively open sets.

(2) Every quasi dense set is SA. Recall that, following [15], a set D is quasi-dense if for each z ∈ D there 
exists a dense subset Mz of X such that for each v ∈ Mz, z + tv ∈ D for all sufficiently small t > 0.

(3) If D is star-shaped with center z, then z ∈ SA(D). Therefore, every convex set is SA.
(4) For the spiral D0 = {(e−t cos(t), e−t sin(t)) ∈ R

2 : t > 0}, the origin is sequentially approachable 
within D0.

(5) Let Dc
0 be the complement of the set D0 defined above. It is a thick spiral containing the origin. Clearly 

(0, 0) ∈ SA(Dc
0). The remaining points of Dc

0 are interior, thus also belong to SA(Dc
0). Therefore, this 

rather exotic set is SA.

Lemma 1. Let X be a topological vector space, let A : X → 2X∗ be a monotone and lower-hemicontinuous 
operator, and let z ∈ SA(D(A)). The following are equivalent:

(i) 〈x∗, x − z〉 ≥ 0 for all x ∈ D(A) and all x∗ ∈ Ax;
(ii) 〈z∗, x − z〉 ≥ 0 for all x ∈ D(A) and all z∗ ∈ Az.

Proof. Due to the monotonicity of A, it is enough to show that (i) implies (ii). Let z∗ ∈ Az. Since z
is densely sequentially approachable within D(A), there exists a set Dz ⊂ X with D(A) ⊂ Dz and, for 
all x in Dz, there exists a sequence of positive numbers (tn) ⊂ R+ such that tn → 0 as n → ∞ and 
yn = z + tn(x − z) ∈ D(A) for n ≥ 1.

Let x ∈ Dz and for η > 0 define

O = {ζ∗ ∈ X∗ : 〈ζ∗ − z∗, x− z〉 < η},

which is open in X∗ for the weak∗ topology. By the continuity assumption on A applied to seg[z, x] :=
{z+ t(x −z) : t ∈ [0, 1]}, we deduce the existence of y∗n ∈ Ayn∩O for all n sufficiently large. By assumption 
we have 〈y∗n, yn − z〉 ≥ 0. On the other hand, x − z = 1

tn
(yn − z). Whence

〈z∗, x− z〉 = 〈z∗ − y∗n, x− z〉 + 〈y∗n, x− z〉

= 〈z∗ − y∗n, x− z〉 + 1
tn

〈y∗n, yn − z〉

> −η.

Since η is arbitrary we must have

〈z∗, x− z〉 ≥ 0 for all x ∈ Dz. (1)

Since D(A) ⊂ Dz, from (1) we can conclude the desired inequality 〈z∗, x − z〉 ≥ 0 for all x ∈ D(A). �
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Remark 2. Lemma 1 extends Minty’s (see [19,20,2,9,11]) in various directions: First, from reflexive Banach 
spaces to topological vector spaces; second, our extension holds for set-valued lower-hemicontinuous map-
pings rather than single-valued mappings that are continuous on finite dimensional subspaces; and finally, 
we consider more general type of domains, beyond the convex ones.

2. Single-valuedness

An important consequence of the preceding result is presented below and it concerns the fact that under 
certain assumptions, the operator is always single-valued.

Given a nonempty set D ⊂ X, the normal cone of D at x ∈ D, denoted by ND(x), is the set

ND(x) = {x∗ ∈ X∗ : 〈x∗, x− u〉 ≥ 0 for all u ∈ D}.

For x /∈ D the normal cone of D at x is the empty set. Observe that 0 ∈ ND(x) for every x ∈ D. Moreover, 
if x ∈ int(D), then ND(x) = {0}. Finally, note that if D is a quasi-dense set, then ND(x) = {0} for every 
x ∈ D.

The following result establishes single-valuedness whenever the normal cone is pointed1:

Theorem 3. Let X be a topological vector space and let A : X → 2X∗ be a lower-hemicontinuous monotone 
operator. Then, A is single-valued at every point z ∈ SA(D(A)) such that ND(A)(z) is pointed.

Proof. Let z ∈ SA(D(A)) and let z∗1 , z∗2 ∈ Az. The monotonicity of A implies

〈x∗ − z∗1 , x− z〉 ≥ 0

for each x ∈ D(A) and x∗ ∈ Ax. By applying Lemma 1 to the operator B : X → 2X∗ defined by Bx =
Ax − {z∗1}, we deduce that

〈z∗2 − z∗1 , x− z〉 ≥ 0

for each x ∈ D(A) and therefore, z∗1 − z∗2 ∈ ND(A)(z). With the same arguments, we can prove that 
z∗2 − z∗1 ∈ ND(A)(z). If ND(A)(z) ∩

[
−ND(A)(z)

]
= {0}, then z∗1 = z∗2 . �

An immediate consequence is the following new result concerning single-valuedness of operators defined 
on topological vector spaces in the interior of their domains:

Corollary 4. Let X be a topological vector space and let A : X → 2X∗ be a monotone and lower-
hemicontinuous operator. Then A is a single-valued mapping on int(D(A)).

Remark 5. Corollary 4 is an extension of [13, Corollary 2.2] from Hilbert to topological vector spaces. In 
addition, our result is formulated under a weaker continuity assumption over more general type of domain 
and using only monotonicity property (not strong monotonicity). Also, it represents a X-to-X∗ counterpart 
of [13, Theorem 2.1].

As in Corollary 4, we obtain an even more general result for quasi-dense domains. Notice that these sets 
are SA and the normal cone is reduced to {0} at every point.

1 A cone K is pointed if K ∩ [−K] = {0}.
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Corollary 6. Let X be a topological vector space and let A : X → 2X∗ be a monotone and lower-
hemicontinuous operator with quasi-dense domain D(A). Then, A is a single-valued mapping.

Remark 7. It is studied in [29,17,16], the set of points where a monotone operator is not single-valued, 
has empty interior (when X is a separable Banach space) and has Lebesgue measure zero (when X is 
finite-dimensional). The above corollaries extend the abovementioned results for more general spaces, under 
the lower-hemicontinuity assumption for the operator.

3. Sufficient conditions for maximality

A monotone operator A : X → 2X∗ is said to be maximal if its graph is not properly contained in the 
graph of any other monotone operator. In other words, whenever the condition

〈x∗ − z∗, x− z〉 ≥ 0 for all x ∈ D(A) and x∗ ∈ Ax,

implies z ∈ D(A) and z∗ ∈ Az. A typical example of a maximal monotone operator is the subdifferential of 
a continuous convex function everywhere defined on a topological vector space [21, Theorem 2].

More generally, a monotone operator A is D-maximal (see Browder [7]) if the condition

(z, z∗) ∈ D(A) ×X∗ and 〈x∗ − z∗, x− z〉 ≥ 0 for all x∗ ∈ Ax with x ∈ D(A),

implies z∗ ∈ Az.

Proposition 8. Let X be a topological vector space and let A : X → 2X∗ be a monotone and lower-
hemicontinuous operator with quasi dense-domain D(A). Then A is a single-valued D-maximal operator.

Proof. Observe that by Corollary 6, the operator A must be single-valued. Now, let z ∈ D(A) and z∗ ∈ X∗

such that

〈Ax− z∗, x− z〉 ≥ 0

for all x ∈ D(A). We shall prove that z∗ = Az. Indeed, as in the proof of Theorem 3, Lemma 1 implies

〈Az − z∗, x− z〉 ≥ 0

for all x ∈ D(A). Once again, the quasi density of D(A) allows us to conclude Az = z∗. �
In particular, we have the following result.

Corollary 9. Let X be a topological vector space and let A : X → 2X∗ be monotone and lower-hemicontinuous 
with D(A) = X. Then A is maximal monotone.

Remark 10. Corollary 9 extends [12, Corollary 2.7 of Chapter V], and [3, Proposition 1]. The two cited 
results assume that the operator is single-valued, which we happen to prove of being unnecessary. Moreover, 
the first result is proved for Banach spaces.
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4. Local boundedness, D-maximality and continuity

Recall that an operator A is locally bounded at x0 if there exists a neighborhood U of x0 such that the 
set

A(U) = ∪{A(x) : x ∈ U}

is a relatively weak∗-compact set of X∗.
As a consequence of some previous results, we obtain the following:

Theorem 11. Let X be a locally convex Hausdorff space and let A : X → 2X∗ be a monotone and lower-
hemicontinuous operator with a quasi-dense domain D(A). If A is locally bounded, then A is a single-valued 
demicontinuous D-maximal monotone operator.

Proof. First of all, due to Corollary 6 and Proposition 8, we derive that A is a single-valued D-maximal 
monotone operator. Then by Theorem 1 of [18], we conclude that A is demicontinuous on D(A). �

As a consequence of Theorem 11, we derive a result for Fréchet spaces, but first, we need the following 
proposition.

Proposition 12. Let X be a Fréchet space and let A : X → X∗ be a hemicontinuous monotone operator with 
quasi-dense domain D(A). Then A is locally bounded.

Proof. The proof is essentially included in the proof of the theorem of [14]. �
Corollary 13. Let X be a Fréchet space and let A : X → 2X∗ be monotone and lower-hemicontinuous 
operator with a quasi-dense domain. Then A is D-maximal and demicontinuous on D(A).

Proof. From Corollary 6, A is single-valued on D(A). Since X is a Fréchet space, A is locally bounded (from 
Proposition 12). Consequently, by Theorem 11, A is demicontinuous and D-maximal on D(A). �
Remark 14. Theorem 11, and especially Corollary 13, extend Theorem 1 of Kato [15] from Banach spaces 
to locally convex spaces and Fréchet spaces respectively.

In this section, we present several results that relate D-maximal monotonicity with continuity properties 
on the operator. Particularly, at the end of the section, we address the question under what assumptions, 
monotone operators are demicontinuous single-valued.

Theorem 15. Let X be a locally convex Hausdorff space and D ⊂ X a nonempty set. Let A : X → 2X∗

be a D-maximal monotone operator, which is locally bounded on finite dimensional subspaces. Then A is 
upper-hemicontinuous on D.

Proof. Let x0 ∈ D(A). Suppose A is not upper-hemicontinuous at x0. This means, for some z ∈ D(A), there 
exists a weak∗ open subset W ⊂ X∗, with Ax0 ⊂ W , such that for each neighborhood U of x0 relative to 
the segment seg[z, x0], there exist x ∈ U and x∗ ∈ Ax with x∗ /∈ W .

First, since A is locally bounded on finite dimensional subspaces, there exists a neighborhood V of x0
relative to seg[z, x0] such that A(V ) is a relatively weak∗-compact set of X∗.

Second, since the segment seg[z, x0] is contained in a finite dimensional subspace, and there is only 
one topology compatible with the structure of locally convex topological Hausdorff space, we may take a 
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sequence of neighborhoods (Vn) ⊂ V of x0 relative to seg[z, x0], such that for any sequence (zn) ⊂ V with 
zn ∈ Vn, one has zn → x0. Therefore, in view of the first paragraph, we can select a sequence (xn) ⊂ V

with xn ∈ Vn, for which there exists x∗
n ∈ Axn ⊂ A(V ) such that x∗

n /∈ W for each n ∈ N. Clearly, from the 
choice of neighborhoods Vn, xn → x0.

From the weak∗ relative compactness of A(V ), we can obtain a subnet (x∗
i ) of (x∗

n), that is convergent 
in the weak∗ topology, to some x∗

0 /∈ W , as well as a subnet (xi) of (xn), with x∗
i ∈ Axi. Since xn → x0, we 

also have xi → x0. Then, the monotonicity of A implies that 〈x∗
i − x∗, xi − x〉 ≥ 0 for all x∗ ∈ Ax and all 

x ∈ D(A). We conclude

〈x∗
0 − x∗, x0 − x〉 ≥ 0 for all x∗ ∈ Ax and for all x ∈ D(A).

Therefore, the D-maximal monotonicity of A implies that x∗
0 ∈ Ax0, which contradicts the fact that x∗

0 /∈ W . 
Consequently, A is upper-hemicontinuous on D(A). �

For the single-valued case, we obtain this interesting fact, that appears to be new, and is a direct 
consequence of Theorem 15.

Corollary 16. Let D be a subset of a locally convex space X and let A : D → X∗ be a D-maximal monotone 
operator, which is locally bounded on finite dimensional subspaces. Then A is hemicontinuous on D.

The following is a consequence of a Rockafellar [26] and Kravvaritis [18] results.

Theorem 17. Let X be a locally convex Hausdorff space and let A : X → 2X∗ be a D-maximal monotone 
operator. Suppose that A is locally bounded at some x ∈ G := int(D(A)). Then A is upper-demicontinuous 
and locally bounded on G ∩D(A).

Proof. By [26, Corollary 2.2], we obtain that A is locally bounded on all of G. Since A is D-maximal, it 
is also (G ∩ D(A))-maximal. Hence, by [18, Theorem 1], we conclude that A is upper demicontinuous on 
G ∩ D(A). �
Remark 18. We notice that Theorem 17 extends Theorem 2 of [17] for Banach spaces to locally convex 
Hausdorff spaces.

A direct consequence of Theorem 17 is the following corollary.

Corollary 19. Let X be a locally convex Hausdorff space and let A : X → 2X∗ be a lower-hemicontinuous 
and D-maximal monotone operator. Suppose that A is locally bounded at some x ∈ int(D(A)). Then A is 
single-valued and demicontinuous on int(D(A)).

Proof. Due to Corollary 4, A is single-valued on int(D(A)), and consequently, by Theorem 17, A is demi-
continuous on int(D(A)). �

We complete this section by replacing the quasi-density of D(A) by being open and obtain an extension 
to arbitrary locally convex spaces of the Theorem in [14].

Corollary 20. Let X be a locally convex Hausdorff space and let A : X → 2X∗ be monotone and lower-
hemicontinuous operator with open domain D(A). Suppose A is locally bounded at some x ∈ D(A). Then A
is a demicontinuous D-maximal monotone operator, which is locally bounded on D(A).
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Proof. First of all, due to Proposition 8, we derive that A is a D-maximal monotone operator. Then as a 
consequence of Theorem 17 combined with Corollary 19, we obtain that A is demicontinuous on D(A). The 
locally boundedness on D(A) follows from [26, Corollary 2.2]. �

Kato [15] proved that, for single valued monotone operators, hemicontinuity implies demicontinuity when-
ever D(A) is a quasi dense subset of a Banach space and A is locally bounded at each point of D(A). So, 
Corollary 20 extends this result for locally convex Hausdorff spaces, showing that the single-valuedness is a 
consequence of the hypothesis.

5. Closedness

An operator A : X → 2X∗ , defined on a normed space X, is said to be demiclosed if for each pair of 
sequences (zn) in X, converging weakly to z ∈ X, and (z∗n) in X∗, converging in the norm topology to 
z∗ ∈ X∗, with z∗n ∈ Azn, one has z∗ ∈ Az.

The following propositions are extensions of well-known results for maximal monotone operators in Hilbert 
spaces to more general spaces. The proofs are essentially the same (see propositions 1.6 and 1.7 in [24]).

Proposition 21. Let X be a normed space and let A : X → 2X∗ be a maximal monotone operator. Then A
is demiclosed.

Proof. Let (zn) be a sequence in X that converges weakly to z while (z∗n) is any sequence in X∗ that 
converges strongly to z∗ with z∗n ∈ Azn. Then, by monotonicity, we have

〈x∗ − z∗n, x− zn〉 ≥ 0 for all x∗ ∈ Ax

and all x ∈ D(A). Passing to the limit we obtain

〈x∗ − z∗, x− z〉 ≥ 0, for all u∗ ∈ Ax and all x ∈ D(A).

The maximality of A gives z ∈ D(A) and z∗ ∈ Az, which completes the proof. �
Remark 22. In the previous proof observe that if X is a Banach space, (zn) converges strongly to z, and 
(z∗n) (with z∗n ∈ Azn) converges in the weak∗ topology to z∗, then we also obtain that z∗ ∈ Az.

Proposition 23. Let X be a topological vector space and let A : X → 2X∗ be a D-maximal monotone operator. 
Then, for each x ∈ D(A), Ax is a w∗-closed convex subset of X∗.

Proof. We first show that Ax is convex for an arbitrary x ∈ D(A). Let x∗
1, x

∗
2 ∈ Ax. Then, we know that

〈x∗
1 − z∗, x− z〉 ≥ 0 and 〈x∗

2 − z∗, x− z〉 ≥ 0 for z ∈ D(A) and z∗ ∈ Az.

Let x∗
t = tx∗

1 + (1 − t)x∗
2 for t ∈ [0, 1]. Then

〈x∗
t − z∗, x− z〉 = t〈x∗

1 − z∗, x− z〉 + (1 − t)〈x∗
2 − z∗, x− z〉 ≥ 0.

Hence 〈x∗
t − z∗, x − z〉 ≥ 0 for all z ∈ D(A) and z∗ ∈ Az, and since A is D-maximal monotone, we conclude 

that x∗
t ∈ Ax. To see that Ax is w∗-closed, let {x∗

α} be a net in Ax such that x∗
α → x∗. Let z ∈ D(A) and 

z∗ ∈ Az. Then



P. Gajardo et al. / J. Math. Anal. Appl. 435 (2016) 1701–1709 1709
〈x∗ − z∗, x− z〉 = 〈x∗ − x∗
α, x− z〉 + 〈x∗

α − z∗, x− z〉
≥ 〈x∗ − x∗

α, x− z〉.

Since x∗
α → x∗, we can deduce 〈x∗ − z∗, x − z〉 ≥ 0. Hence x∗ ∈ Ax due to the D-maximal monotonicity 

of A. �
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