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58 R. Correa et al.

1 Introduction

In the literature of the last 25 years we can find several definitions of directional
derivatives stimulated by optimization problems and studies of properties of several
classes of nonsmooth functions. Along with those definitions, naturally arises the
interest to investigate the links that there are between these concepts of directional
derivatives. Our aim is to study such links through a multidirectional mean value
inequality established in Aussel et al. [2]. Such a mean value inequality involving
sets has been provided for the first time by Clarke and Ledyaev [8] in their seminal
paper relative to the Hilbert setting. Examples of the study of some particular relations
between directional derivatives via a geometrical approach (i.e., via relations between
tangent cones) exist in the literature. We can cite Rockafellar [21] who introduced (see
Definition 1) the generalized directional derivative f ↑ (that we denote in the paper by
d↑ f in order to homogenize the notation) and established, concerning the Clarke
derivative d0 f (denoted by f 0 in [21]), the relation

d↑ f (x̄; v̄) = lim inf
v→v̄

d0 f (x̄; v), (1)

for directionally Lipschitzian functions. Also, Ioffe [14] showed that in finite
dimensional spaces for every lower semicontinuous (lsc) function f, the generalized
directional derivative d↑ f (x̄; ·) is the upper epi-limit (or a �-limit) of the (lower) Dini
directional derivative d− f (x; ·) when x → f x̄, that is,

lim sup
x→ f x̄

inf
v→v̄

d− f (x; v) = d↑ f (x̄; v̄). (2)

Among others, our interest for the study of the above links is that equalities like (1)
and (2) may be used for example to investigate properties of the Rockafellar derivative
of a value function in sensitivity analysis. Observe that other theoretical applications
of (1) and (2) are given in [14], [20] and [21].

In the early 80s, the tangent cone introduced by Clarke in 1973 focussed much
attention because of its relevance in variational and nonsmooth analysis due, in partic-
ular, to its convexity property. On the other hand, the theory of approximating cones
originated by Boulingand [7] was strongly revisited in the same period. The Boulin-
gand tangent cone always contains the Clarke one. Motivated, among others by the
viability theory of differential inclusions, Cornet initiated in the finite dimensional
setting the study of the lower limit of Boulingand tangent cones. Actually, Cornet [10]
and Penot [18] proved that this lower limit is equal, in finite dimensions, to the Clarke
tangent cone. Penot’s approach also yields to the equality for some classes of sets of
Banach space. The general inclusion of the lower limit of Boulingand tangent cones
in the Clarke tangent cone in the context of Banach space has been established by
Treiman [24].

Links between directional derivatives and the theory of approximating tangent cones
are strongly related. In fact, Ioffe in [14] used the result given by Cornet and Penot in
order to prove the above equality (2). Also, the proof of (1) given by Rockafellar in
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Links between directional derivatives 59

[21] is in terms of tangential cones where the epigraph of a function is the involved
set. The proof of (1) and (2) given in [22] also follows the same geometrical approach.

In this work, as we already said, our objective is to obtain links between directional
derivatives with a functional approach, i.e., not using inclusions between tangent and
approximated tangent cones. The principal tool for this purpose is a multidirectional
mean value inequality given by Aussel et al. in [2] for a large class of subdiffer-
ential operators and another corresponding multidirectional mean value inequality
established for the Dini directional derivative, both based on the Ekeland’s variational
principle. The result in [2] is an extension to Banach space of the one of Clarke and
Ledyaev [8] established earlier in the context of Hilbert space (see also [9] for appli-
cations). Another multidirectional mean value inequality has been also provided by
Luc [17]. With these results we can recover the well known inclusions and equalities
from the theory of approximating tangent cones cited above, setting as lsc function the
indicator function of a closed set. Also, we obtain the results given by Borwein and
Strójwas [6] for weak sequential Bouligand tangent cones in reflexive Banach spaces
as corollary of links that involve the weak lower Dini directional derivative. So, we
provide some more theoretical applications showing how strong is the multidirectional
mean value inequality in [2].

The paper is organized as follows. In Sect. 2 we recall definitions of some non-
smooth analysis concepts. The third section is devoted to establishing the inequality

d↑ f (x̄; v̄) ≤ lim sup
x→ f x̄

inf
v→v̄

d− f (x; v), (3)

on any Banach space for any lsc function and also the same inequality with the weak
lower Dini directional derivative instead of d− f . Finally, in Sect. 4 we investigate clas-
ses of functions for which one has the equality in (3). For this purpose, we introduce
a new directional derivative which is related to the tangent cone defined by Borwein
and Strójwas in [5].

2 Preliminaries

Throughout all the paper, unless othewise stated, (X, ‖ · ‖) stands for a real Banach
space, X∗ for its topological dual and 〈·, ·〉 for the duality pairing.

We recall some well known concepts in nonsmooth analysis, as lower Dini, weak
lower Dini, and Rockafellar directional derivatives. They are special limits of the
differential quotient t−1[ f (x + tv) − f (x)]. We recall first the concept of upper epi-
limit or �-limit (see [1,13,22]). Let ϕ : X × X −→ R ∪ {+∞} be a function and
f : X −→ R ∪ {+∞} a lsc function. For x̄ , v̄ ∈ X the upper epi-limit or �-limit of
ϕ(x; ·) at v̄ when x → f x̄ is the mixed limit

lim sup
x→ f x̄

inf
v→v̄

ϕ(x; v) := sup
δ>0

inf
ε>0

sup
x∈B f (x̄,ε)

inf
v∈B(v̄,δ)

ϕ(x; v)

= sup
xk→ f x̄

inf
vk→v̄

lim sup
k→+∞

ϕ(xk; vk),
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60 R. Correa et al.

where B(v̄, δ) = {v ∈ X : ‖v̄ − v‖ < δ} is the open ball centered in v̄ ∈ X with
radius δ > 0, B f (x̄, ε) = B(x̄, ε) ∩ {x ∈ X : | f (x̄) − f (x)| < ε}, and xk → f x̄
means xk → x̄ with f (xk) → f (x̄).

Note that the above definition does not change if we put the closed ball B[v̄, δ] :=
{v ∈ X : ‖v̄ − v‖ ≤ δ} instead of B(v̄, δ).

Definition 1 The lower Dini directional derivative of a lsc function f at a point x̄
where it is finite, is defined by

d− f (x̄; v̄) = lim inf
v→v̄

t→0+
t−1[ f (x̄ + tv) − f (x̄)];

the weak lower Dini directional derivative by the sequential lower limit, with the weak
topology in the notation vk ⇀ v̄,

d−
w f (x̄; v̄) = inf

vk⇀v̄

tk→0

lim inf
k→∞ t−1

k [ f (x̄ + tkvk) − f (x̄)];

and the Rockafellar directional derivative by the following upper epi-limit or �-limit
of the differential quotient

d↑ f (x̄; v̄) = lim sup
x→ f x̄

t→0+

inf
v→v̄

t−1[ f (x + tv) − f (x)]

:= sup
δ>0

inf
ε>0

sup
x∈B f (x̄,ε)

t∈]0,ε[

inf
v∈B(v̄,δ)

t−1[ f (x + tv) − f (x)]

= sup
xk→ f x̄

tk→0+

inf
vk→v̄

lim sup
k→+∞

t−1
k [ f (xk + tkvk) − f (xk)].

Obviously, the definition of d↑ f (x̄; v̄) does not change if we put the closed ball B[v̄, δ]
instead of B(v̄, δ).

Also, we recall the definitions of Bouligand, weak sequential Bouligand, and Clarke
tangent cones.

Definition 2 Let S ⊂ X be a nonempty closed set. The Bouligand tangent cone to S
at x ∈ S is defined by

TB(S; x) := lim sup
t→0+

t−1(S − x)

= {
v ∈ X : ∃ tk → 0+, ∃ vk → v with vk ∈ t−1

k (S − x)
};

the weak sequential Boulingand tangent cone to S at x ∈ S by

T w
B (S; x) := w − lim sup

t→0+
t−1(S − x)

= {
v ∈ X : ∃ tk → 0+, ∃ vk ⇀ v with vk ∈ t−1

k (S − x)
}
,
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Links between directional derivatives 61

where vk ⇀ v stands (as in Definition 1) for the convergence with respect to the weak
topology; and the Clarke tangent cone to S at x ∈ S by

TC (S; x) := lim inf
x ′→S x

t→0+
t−1(S − x ′)

= {
v ∈ X : ∀ xk →S x, ∀ tk → 0+, ∃ vk → v with vk ∈ t−1

k (S − xk)
}
,

where xk →S x̄ means xk → x̄ with xk ∈ S.

Directly from the above definitions, we can observe that for x̄ ∈ S and for all v̄ ∈ X
one has (see also [14,21])

�TB (S;x̄)(v̄) = d−�S(x̄; v̄) (4)

�T w
B (S;x̄)(v̄) = d−

w �S(x̄; v̄) (5)

�TC (S;x̄)(v̄) = d↑�S(x̄; v̄) (6)

where

�S(x) =
{

0 if x ∈ S
+∞ if x /∈ S,

is the indicator function of the set S.
On the other hand, recalling that the epigraph of f is given by

epi f := {(x, r) ∈ X × R : f (x) ≤ r},

we see directly that for all x̄ ∈ dom f := {x ∈ X : f (x) < +∞}, and (v̄, s) ∈ X ×R

one has

d−�epi f (x̄, f (x̄); v̄, s) = �epi d− f (x̄;·)(v̄, s); (7)

d−
w �epi f (x̄, f (x̄); v̄, s) = �epi d−

w f (x̄;·)(v̄, s); (8)

d↑�epi f (x̄, f (x̄); v̄, s) = �epi d↑ f (x̄;·)(v̄, s); (9)

f (x̄) ≤ β ⇒
⎧
⎨

⎩

�epi f (x̄ + v̄, β + s) ≤ �epi f (x̄ + v̄, f (x̄) + s)

d−�epi f (x̄, β; v̄, s) ≤ d−�epi f (x̄, f (x̄); v̄, s).
(10)

Finally, following [12,23] we will call quasi presubdifferential on X any operator
∂ which associates with any function f : X → R ∪ {+∞} and any x ∈ X a subset
∂ f (x) of X∗ and which satisfies the following properties.

(P1) ∂ f (x) ⊂ X∗ and ∂ f (x) = ∅ if x /∈ dom f ;
(P2) ∂ f (x) = ∂g(x) whenever f and g coincide on a neighborhood of x ;
(P3) ∂ f (x) is equal to the subdifferential in the sense of convex analysis whenever

f is convex and lsc;
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(P4) If f is lsc near x , g convex continuous, and x a local minimum point of f + g,
one has

0 ∈ (lim sup
y→ f x

∂ f (y)) + ∂g(x),

where lim sup denotes here the weak-star sequential upper limit.

3 General inequalities between directional derivatives

In this section we show links between directional derivatives which are established
for any lsc function on any Banach space. In order to obtain these links, we need the
multidirectional mean value inequalities below. The first part is established in [2] for
an operator ∂ which is a quasi presubdifferential, and the second result is given in
terms of the Dini’s derivative which is obtained following an analogous proof to that
of [2].

Let C ⊂ X be a nonempty convex set. For δ ≥ 0, we set Bδ(C) := {x ∈
X : d C (x) < δ}, where d C (·) is the distance function to C . As in [2], we set
rC ( f ) := sup

δ>0
inf

y∈Bδ(C)
f (y).

Theorem 1 Let C ⊂ X be a nonempty convex closed set, a ∈ X, D = [a, C] :=
{λa + (1 − λ)c : λ ∈ [0, 1], c ∈ C}, and f : X −→ R ∪ {+∞} a lsc function
bounded from below on a neighborhood of D. If a ∈ dom f and r ≤ rC ( f ), then:

(a) For any quasi presubdifferential ∂ , there exist sequences {xn} ⊂ Dom ∂ f and
x∗

n ∈ ∂ f (xn) such that d D(xn) → 0 and

〈x∗
n , c − a〉 ≥ r − f (a) − (1/n)‖c − a‖ − 1/n ∀c ∈ C, ∀n. (11)

(b) There exists a sequence {xn} ⊂ dom f such that d D(xn) → 0 and

d− f (xn; c − a) ≥ r − f (a) − (1/n)‖c − a‖ − 1/n ∀c ∈ C, ∀n. (12)

Proof One can find the proof of (11) in [2]. The relation (12) can be established
following the proof of (11) in [2].

As a consequence of the above theorem we have the next proposition. Recall first
that a Banach space is an Asplund space provided every separable subspace has a
separable topological dual.

Proposition 1 Let C ⊂ X be a nonempty convex closed set of an Asplund space X,
a ∈ X, D = [a, C], and f : X −→ R ∪ {+∞} a lsc function bounded from below
on a neighborhood of D. If a ∈ dom f and r ≤ rC ( f ), then there exists a sequence
{xn} ⊂ dom f such that d D(xn) → 0 and

d−
w f (xn; c − a) ≥ r − f (a) − (1/n)‖c − a‖ − 1/n ∀c ∈ C, ∀n. (13)
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Links between directional derivatives 63

In order to prove this result, we need the following lemma.

Lemma 1 For all x̄ ∈ Dom ∂F f = {x ∈ X : ∂F f (x) �= ∅}, one has

x∗ ∈ ∂F f (x̄) ⇒ 〈x∗, v̄〉 ≤ d−
w f (x̄; v̄) ∀ v̄ ∈ X,

where ∂F f (x) := {
x∗ ∈ X∗ : lim inf

x ′→x

f (x ′)− f (x)−〈x∗,x ′−x〉
‖x ′−x‖ ≥ 0

}
is the Fréchet

subdifferential of the function f .

Proof (Lemma) Let v̄ be in X and x∗ ∈ ∂F f (x̄). Take any tk → 0+ and (vk) con-
verging weakly to v̄. For every ε > 0, there exists k0 ∈ IN such that

t−1
k [ f (x̄ + tkvk) − f (x̄)] ≥ 〈x∗, vk〉 + ε‖vk‖ ∀ k ≥ k0,

hence according to the weak lower semicontinuity of the norm

lim inf
k→+∞ t−1

k [ f (x̄ + tkvk) − f (x̄)] ≥ 〈x∗, v〉 + ε‖v̄‖.

We then deduce d−
w f (x̄; v̄) ≥ 〈x∗, v̄〉 + ε‖v̄‖ for all ε > 0, which proves the lemma.

Proof (Proposition 1) In Asplund spaces, the Fréchet subdifferential ∂F is a quasi pre-
subdifferential (see for example [12]). Moreover, from Lemma 1, x∗

n ∈ ∂F f (xn) ⇒
〈x∗

n , c − a〉 ≤ d−
w f (xn; c − a). Replacing in (11) we obtain the desired result.

We establish now the following first inequality.

Theorem 2 For any lsc function f : X −→ R ∪ {+∞} one has

d↑ f (x̄; v̄) ≤ lim sup
x→ f x̄

inf
v→v̄

d− f (x; v) ∀ x̄ ∈ dom f, v̄ ∈ X. (14)

Proof We will develop this proof in two steps. First, we suppose that f is continuous
with respect to its domain in order to obtain (14), and then using this result we will
extend (14) for every lsc function.

Step 1. Fix x̄ ∈ dom f and v̄ ∈ X . By continuity with respect to the domain of f
at x̄ ∈ dom f , we have

∀ η > 0, ∃ ξ = ξ(η) > 0 such that x ∈ B(x̄, ξ) ∩ dom f ⇒ x ∈ B f (x̄, η). (15)

Also, since f is lsc at x̄ we have that there exists ν̄ > 0 such that f is bounded from
below on B(x̄, ν̄). Let δ, η > 0, and ε > 0 such that

ε(2 + δ + ‖v̄‖) < min{ξ(η), ν̄}

where ξ(η) is given by (15), and let α > 0 and δ′ ∈ ]0, δ[.
Let x ∈ B f (x̄, ε) and t ∈ ]0, ε[. Put C := x + t B[v̄, δ′]. Note that f is bounded

from below on a neighborhood of D := [x, C] because [x, C] ⊂ B(x̄, ν̄).

123



64 R. Correa et al.

Choose γ = γ (t, δ′, δ) > 0 such that δ′ + γ
t < δ. Since rC ( f ) = sup

γ ′>0
inf

Bγ ′ (C)
f , we

have inf
Bγ (C)

f < rC ( f )+ tα, which yields the existence of some c ∈ C and b ∈ B[0, 1]
with f (c+γ b) < rC ( f )+ tα. Thus, we have some v′′ ∈ B[v̄, δ′ + γ

t ] ⊂ B[v̄, δ] such
that f (x + tv′′) < rC ( f ) + tα. By Theorem 1 (12), there exists xn = xn(x, t, δ, ε) in
dom f such that dD(xn) → 0 and

d− f (xn; v′) ≥ t−1[ f
(
x + tv′′) − f (x)

] − α − (1/n)‖v′‖ − 1

tn
∀ v′ ∈ B[v̄, δ′]

yielding for β := ‖v̄‖ + δ

inf
v′∈B[v̄,δ′]

d− f
(
xn; v′) ≥ t−1[ f

(
x + tv′′) − f (x)

] − α − β

n
− 1

tn

and hence

inf
v′∈B[v̄,δ′]

d− f
(
xn; v′) ≥ inf

v∈B[v̄,δ] t−1[ f (x + tv) − f (x)] − α − β

n
− 1

tn
.

Choose n0 = n0(x, t, δ, ε) such that for all n ≥ n0 one has d D(xn) < ε and hence
there exist αn ∈ [0, 1] and vn ∈ B[v̄, δ] such that ‖xn −dn‖ < ε for dn := x + tαnvn .

Thus, for each n ≥ n0

‖xn − x̄‖ ≤ ‖xn − dn‖ + ‖dn − x̄‖ < ε + ‖x̄ − x‖ + t‖vn‖ < 2ε + ε(‖v̄‖ + δ) < ξ,

ensuring xn ∈ B f (x̄, η) according to (15) and hence

inf
v∈B[v̄,δ] t−1[ f (x + tv) − f (x)] ≤ sup

x ′∈B f (x̄,η)

inf
v′∈B[v̄,δ′]

d− f
(
x ′; v′) + α + β

n
+ 1

tn
.

This entails for all x ∈ B f (x̄, ε), t ∈]0, ε[

inf
v∈B[v̄,δ] t−1[ f (x + tv) − f (x)] ≤ sup

x ′∈B f (x̄,η)

inf
v′∈B[v̄,δ′]

d− f
(
x ′; v′) + α.

Therefore, we have successively

sup
x∈B f (x̄,ε)

t∈]0,ε[

inf
v∈B[v̄,δ] t−1[ f (x + tv) − f (x)] ≤ sup

x ′∈B f (x̄,η)

inf
v′∈B[v̄,δ′]

d− f
(
x ′; v′) + α

inf
ε>0

sup
x∈B f (x̄,ε)

t∈]0,ε[

inf
v∈B[v̄,δ] t−1[ f (x + tv) − f (x)] ≤ sup

x ′∈B f (x̄,η)

inf
v′∈B[v̄,δ′]

d− f
(
x ′; v′) + α

123



Links between directional derivatives 65

with η > 0 arbitrary, so

inf
ε>0

sup
x∈B f (x̄,ε)

t∈]0,ε[

inf
v∈B[v̄,δ] t−1[ f (x + tv) − f (x)]

≤ sup
δ′′>0

inf
η>0

sup
x ′∈B f (x̄,η)

inf
v′∈B[v̄,δ′′]

d− f
(
x ′; v′) + α

for any δ, α > 0, which proves (14).
Step 2. Assume now that f is lsc. We may suppose that the second member of (14)

is less than +∞. Fix any r ∈ R such that

r > lim sup
x→ f x̄

inf
v→v̄

d− f (x; v) = sup
xk→ f x̄

inf
vk→v̄

lim sup
k→+∞

d− f (xk; vk). (16)

Take xk → x̄ and sk ≥ f (xk) such that sk → f (x̄). Since f is lsc, one has
f (xk) → f (x̄) and then xk → f x̄ . From (16) one knows that there exists vk →
v̄ such that d− f (xk; vk) < r for all k large enough. Using (7) we obtain that
d−�epi f (xk, f (xk); vk, r) = 0, and from (10) we can deduce d−�epi f (xk, sk; vk, r)

= 0. Thus, for all (xk, sk) →epi f (x̄, f (x̄)) there exists vk → v̄ such that

lim sup
k→+∞

d−�epi f (xk, sk; vk, r) = 0,

which implies

0 = sup
(xk ,sk )→epi f (x̄, f (x̄))

inf
(vk ,rk )→(v̄,r)

lim sup
k→+∞

d−�epi f (xk, sk; vk, rk)

= lim sup
(x,s)→epi f (x̄, f (x̄))

inf
(v′,r ′)→(v̄,r)

d−�epi f (x, s; v′, r ′).

Since �epi f is continuous with respect to its domain, we obtain by the first step
d↑�epi f (x̄, f (x̄); v̄, r) = 0 and using (9), we conclude d↑ f (x̄; v̄) ≤ r, which proves
the desired result.

Using Proposition 1 and following the proof of Theorem 2, we obtain the following
theorem giving a similar inequality with the weak sequential lower Dini derivative.

Theorem 3 If X is an Asplund space then, for all lsc function f : X −→ R ∪ {+∞}
one has

d↑ f (x̄; v̄) ≤ lim sup
x→ f x̄

inf
v→v̄

d−
w f (x; v) ∀ x̄ ∈ dom f, v̄ ∈ X. (17)

Assume now that the following additional properties hold for the quasi presubdiffer-
ential ∂ .

123
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(P5) For any lsc functions f : X → R ∪ {+∞}, g : Y → R ∪ {+∞} (where
Y is another Banach space), and for ( f ⊕ g)(x, y) := f (x) + g(y) one has
∂( f ⊕ g)(x, y) ⊂ ∂ f (x) × ∂g(y);

(P6) For any lsc function f and any (x∗,−r∗) ∈ ∂�epi f (x, r) one has r∗ ≥ 0;
(P7) ∂�epi f (x, r) ⊂ ∂�epi f (x, f (x)) for any lsc function f and any (x, r) ∈ X×R;
(P8) For any lsc function f for any x ∈ dom f it is satisfied ∂ f (x) = {

x∗ ∈
X∗ : (x∗,−1) ∈ ∂�epi f (x, f (x)

}
.

Then for a lsc function f : X → R ∪ {+∞}, if we denote by ∂∞ f (x) its related
singular presubdifferential at x , i.e.,

∂∞ f (x) := {
x∗ ∈ X∗ : (x∗, 0) ∈ ∂�epi f (x, f (x))

}
,

and if we define

σ f (x; v) := sup
{〈x∗, v〉 : x∗ ∈ ∂ f (x) ∪ ∂∞ f (x)

}
,

we can obtain another result similar to Theorem 2.
Observe that smaller is the quasi presubdifferential better is the function σ f with

respect to the inequality (18) below. All the properties (P1)–(P8) hold in appropriate
spaces for the proximal, Fréchet, and viscosity subdifferentials which are known as
the smallest ones.

Theorem 4 For any lsc function f : X −→ R ∪ {+∞}, if ∂ is a quasi presubdiffer-
ential that satisfies properties (P5)–(P8), one has

d↑ f (x̄; v̄) ≤ lim sup
x→ f x̄

inf
v→v̄

σ f (x; v) ∀ x̄ ∈ dom f, v̄ ∈ X. (18)

Proof Following the proof of Theorem 2, we see that the arguments of Step 1 (the lsc
function is continuous with respect to its domain) are the same using the correspond-
ing multidirectional mean value inequality (11) from Theorem 1. Thus, we will only
prove the Step 2. Firstly, let us prove that for x ∈ dom f and r ≥ f (x) one has

σ�epi f (x, r; v, s) ≤ σ�epi f (x, f (x); v, s) ≤ �epi σ f (x,·)(v, s) ∀ (v, s) ∈ X × R.

(19)

If we fix x ∈ dom f and r ≥ f (x), we can show that

∂∞�epi f (x, r) ⊂ ∂�epi f (x, r). (20)

In fact, put g := �epi f and take any (x∗,−r∗) ∈ ∂∞g(x, r). This means that
(x∗,−r∗, 0) ∈ ∂�epi g(x, r, 0). As �epi g(x, r, s) = �epi f (x, r) + �[0,+∞[(s),
according to (P3) and (P5) we have ∂�epi g(x, r, 0) ⊂ ∂�epi f (x, r)×] − ∞, 0] and
hence (x∗,−r∗) ∈ ∂�epi f (x, r), which yields the desired inclusion.
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Fix now any (v, s) ∈ X × R. Inclusion (20) and property (P7) yield

∂�epi f (x, r) ∪ ∂∞�epi f (x, r) = ∂�epi f (x, r) ⊂ ∂�epi f (x, f (x)), (21)

which, in particular, entails σ�epi f (x, r; v, s) ≤ σ�epi f (x, f (x); v, s), i.e., the first
inequality in (19).

Let us establish the second inequality in (19). It is enough to suppose that
�epi σ f (x,·)(v, s) = 0, i.e., σ f (x, v) ≤ s. Take (x∗,−r∗) ∈ ∂�epi f (x, f (x)) ∪
∂∞�epi f (x, f (x)). By the equality in (21) with r = f (x), we have (x∗,−r∗) ∈
∂�epi f (x, f (x)) and hence r∗ ≥ 0 according to (P6).

If r∗ > 0 then, by (P8), we have x∗/r∗ ∈ ∂ f (x) and we obtain 〈x∗/r∗, v〉 ≤ s,
i.e., 〈x∗, v〉 − r∗s ≤ 0.

On the other hand, if r∗ = 0 we have x∗ ∈ ∂∞ f (x) and then 〈x∗, v〉 ≤ s. With
this inequality and recalling that ∂∞ f (x) is a cone, we conclude 〈x∗, v〉 ≤ 0. Thus,
for all (x∗,−r∗) ∈ ∂�epi f (x, f (x)) ∪ ∂∞�epi f (x, f (x)) we have proved that

〈x∗, v〉 − r∗s ≤ 0.

This means that the second inequality in (19) holds.
Now we prove the Step 2 (the function f is lsc). We may suppose that the second

member of (18) is less than +∞. Fix any r ∈ R such that

r > lim sup
x→ f x̄

inf
v→v̄

σ f (x; v) = sup
xk→ f x̄

inf
vk→v̄

lim sup
k→+∞

σ f (xk; vk). (22)

Take xk → x̄ and sk ≥ f (xk) such that sk → f (x̄). Since f is lsc, one has
f (xk) → f (x̄) and then xk → f x̄ . From (22) one knows that there exists vk → v̄

such that σ f (xk; vk) < r for all k large enough. Using (19) we obtain that σ�epi f

(xk, sk; vk, r) = 0.
Thus, for all (xk, sk) →epi f (x̄, f (x̄)) there exists vk → v̄ such that

lim sup
k→+∞

σ�epi f (xk, sk; vk, r) = 0,

which implies

0 = sup
(xk ,sk )→epi f (x̄, f (x̄))

inf
(vk ,rk )→(v̄,r)

lim sup
k→+∞

σ�epi f (xk, sk; vk, rk)

= lim sup
(x,s)→epi f (x̄, f (x̄))

inf
(v′,r ′)→(v̄,r)

σ�epi f

(
x, s; v′, r ′).

Since �epi f is continuous with respect to its domain, we obtain by the first step
d↑�epi f (x̄, f (x̄); v̄, r) = 0 and using (9), we conclude d↑ f (x̄; v̄) ≤ r, which proves
the desired result.

The links (14) and (17) established between directional derivatives and equalities
(4)–(6) allow us to derive the following well known inclusions between tangent cones.
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The first inclusion (23) below in the context of Banach spaces is due to Treiman [24].
His deep proof is based on the arguments of Bishop and Phelps [3]. Another proof
has been given by Penot [19]. The inclusion (24) (as well as the equality) has been
established for reflexive Banach spaces by Borwein and Strójwas [6]. The extension
of this inclusion (24) in the setting of Asplund spaces has been obtained by Jourani
[15].

Corollary 1 Let S ⊂ X be a nonempty closed set and x̄ ∈ S, then:

lim inf
x→S x̄

TB(S; x) ⊂ TC (S; x̄); (23)

and if X is an Asplund space, one has

lim inf
x→S x̄

T w
B (S; x) ⊂ TC (S; x̄). (24)

Proof Let v̄ ∈ lim inf
x→S x̄

TB(S; x). Then for all xk →S x̄ , there exists vk → v̄ such that

vk ∈ TB(S; xk), hence by (4), �TB (S;xk )(vk) = d−�S(xk; vk) = 0, that is,

lim sup
x→ f x̄

inf
v→ v̄

d−�S(x; v) = sup
xk→S x̄

inf
vk→v̄

lim sup
k→+∞

d−�S(xk; vk) = 0.

From Theorem 2 and using (6) we can write

0 = lim sup
x→ f x̄

inf
v→ v̄

d−�S(x; v) ≥ d↑�S(x̄; v̄) = �TC (S;x̄)(v̄) ≥ 0,

which proves the inclusion (23).
The proof of (24) is analogous using Theorem 3.

In the next section we analyze some classes of functions for which we obtain the
equality in (14) and (17). These results will imply equalities in (23) and (24) for
corresponding classes of sets.

4 Special classes of functions

In this section we provide a detailed analysis of functions for which one has the equality
in (14) and also in (17). Ioffe in [14] showed the equality in (14) in finite dimensional
spaces. We obtain the same result and we established in addition that the equality
holds for compactly epi-Lipschitzian functions (see [4,16]) and convex functions on
any Banach space. Also, the equality in (17) is established for any lsc function in
reflexive Banach spaces.

The result given by Ioffe [14] in the finite dimensional setting uses formula (23)
with the equality (see [10,18]). The equality in (14) is obtained in [14] taking as a
closed set the epigraph of a lsc function. In the next proposition we prove Ioffe’s result
by a direct functional approach. The technique used in the proof will also allow us to
obtain the equality in (14) for general classes of functions.
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Proposition 2 ([14]) If the Banach space X is finite dimensional, then for any lsc
function f and for all x̄ ∈ dom f and v̄ ∈ X one has

lim sup
x→ f x̄

inf
v→v̄

d− f (x; v) = d↑ f (x̄; v̄). (25)

Proof Fix x̄ ∈ dom f , v̄ ∈ X , α > 0, ε > 0, and δ > 0. Then, for every x ∈ B f (x̄, ε)

and v ∈ B[v̄, δ]
⎧
⎨

⎩

there exist ξ(x, v) > 0 such that
d− f (x; v) ≤ t−1

[
f
(
x + tv′) − f (x)

] + α

for all t ∈ ]0, ξ(x, v)] and v′ ∈ B(v, ξ(x, v)).

(26)

Since B[v̄, δ] is compact,

∃ v1, . . . , vn in B[v̄, δ] such that B[v̄, δ] ⊂
n⋃

i=1

B(vi , ξ(x, vi )). (27)

If we take v̂ ∈ {vi : i = 1, . . . , n} such that

d− f (x; v̂) = min{d− f (x; vi ) : i = 1, . . . , n} (28)

and η = min{ε, ξ(x, v1), . . . , ξ(x, vn)}, we obtain

inf
v∈B[v̄,δ] d− f (x; v) ≤ d− f (x; v̂) ≤ α + inf

v′∈B[v̄,δ]
t−1[ f

(
x + tv′) − f (x)

] ∀ t ∈ ]0, η]

and hence

sup
x∈B f (x̄,ε)

inf
v∈B[v̄,δ] d−(x; v) ≤ α + sup

x ′∈B f (x̄,ε)

0<t≤ε

inf
v′∈B[v̄,δ]

t−1[ f
(
x ′ + tv′) − f

(
x ′)],

for ε, δ > 0 and α > 0 arbitrary. So the proof of the desired result is complete because
the other inequality is established in Theorem 2.

In the case of a reflexive Banach space, the equality (25) holds with d−
w (·; ·) in

place of d−(·; ·). However, the proof in this context requires, because of the sequen-
tial property in the definition of d−

w (·; ·), some different arguments.

Proposition 3 If the Banach space X is reflexive, then for any lsc function f and for
all x̄ ∈ dom f and v̄ ∈ X one has

lim sup
x→ f x̄

inf
v→v̄

d−
w f (x; v) = d↑ f (x̄; v̄).
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Proof According to Theorem 3 we only need to prove that the first member of the
proposition is not greater than the second one. Obviously we may suppose d↑ f (x̄; v̄) <

+∞. Fix any real numbers r > d↑ f (x̄; v̄) and δ > 0. By definition of d↑ f (x̄; v̄)

there exist εδ > 0 and sδ > 0 such that

sup
x ∈ B f (x̄, εδ)

t ∈ ]0, sδ[

inf
v∈B[v̄,δ] t−1[ f (x + tv) − f (x)] < r.

This yields for every (t, x) ∈ ]0, sδ[×B f (x̄, εδ) some v(t, x) ∈ B[x̄, δ] with

t−1[ f (x + tv(t, x)) − f (x)] < r. (29)

The weak compactness of B[v̄, δ] allows us to fix some sequence (tn)n in ]0, sδ[ con-
verging to 0 and such that (v(tn, x))n converges weakly to some v(x) ∈ B[v̄, δ].
Combining (29) and the definition of d−

w f (x; ·) we obtain d−
w f (x; v(x)) ≤ r and

hence inf
v∈B[v̄,δ] d−

w f (x; v) ≤ r. Consequently

sup
x∈B f (x,εδ)

inf
v∈B[v̄,δ] d−

w f (x; v) ≤ r

which yields

sup
δ>0

inf
ε>0

sup
x∈B f (x,ε)

inf
v∈B[v̄,δ] d−

w f (x; v) ≤ r

and completes the required inequality

lim sup
x→ f x̄

inf
v→v̄

d−
w f (x; v) ≤ d↑ f (x̄; v̄).

We proceed now to establish the equality (25) for directionally Lipschitzian func-
tions. Recall that f is directionally Lipschitzian at x̄ ([21]) provided there exists z̄ ∈ X
such that

f �(x̄; z̄) := lim sup
x→x̄

t→0+
z→z̄

t−1[ f (x + t z) − f (x)] < +∞. (30)

Our proof of (25) for directionally Lipschitzian functions will use the equality

d↑ f (x̄; v̄) = lim inf
v→v̄

d0 f (x̄; v), (31)

which was proven by Rockafellar [21], where

d0 f (x̄; v) = lim sup
x→ f x̄

t→0+

f (x + tv) − f (x)

t
.
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Rockafellar proved (31) when f is the indicator function of an epi-Lipschitzian closed
set, so, he worked with sets and then, he concluded putting as epi-Lipschitzian closed
set the epigraph of the directionally Lipschitzian lsc function (recall that a function is
directionally Lipschitzian iff its epigraph is an epi-Lipschitzian set). In the proposition
below, we give a direct analytical simple proof of (31).

Proposition 4 ([21]) If the lsc function f is directionally Lipschitzian at x̄ ∈ dom f,
then for all v̄ ∈ X one has

d↑ f (x̄; v̄) = lim inf
v→v̄

d0 f (x̄; v).

Proof Directly from the definitions we have

d↑ f (x̄; v̄) ≤ lim inf
v→v̄

d0 f (x̄; v),

for all v̄ ∈ X . Let us prove that

f �(x̄; v̄ + λw̄) ≤ d↑ f (x̄; v̄) + λ f �(x̄; w̄)

for all v̄, w̄ ∈ X and λ > 0. Let v̄ ∈ X such that d↑ f (x̄; v̄) < ∞, w̄ ∈ X , λ > 0 and
take ε > 0, xk → f x̄ , tk → 0+, and qk → v̄ + λw̄. As we will prove in Lemma 2,
there exists vk → v̄ such that t−1

k [ f (xk + tkvk) − f (xk)] ≤ d↑ f (x̄; v̄) + ε with
xk + tkvk → f x̄ . Thus, we write

t−1
k [ f (xk + tkqk) − f (xk)] = t−1

k [ f (xk + tkvk) − f (xk)]
+ t−1

k [ f ((xk + tkvk) + tk(qk − vk)) − f (xk + tkvk)].

Since xk + tkvk → f x̄ and (qk − vk) → λw̄, taking lim sup
k→+∞

, we obtain

lim sup
k→+∞

t−1
k [ f (xk + tkqk) − f (xk)] ≤ lim sup

k→+∞
t−1
k [ f (xk + tkvk) − f (xk)]

+ f �(x̄; λw̄)

≤ d↑ f (x̄; v̄) + ε + λ f �(x̄; w̄),

for all ε > 0, xk → f x̄ , and qk → v̄ + λw̄. Thus,

f �(x̄; v̄ + λw̄) ≤ d↑ f (x̄; v̄) + λ f �(x̄; w̄).

If in the above inequality we put z̄ given by (30) in place of w̄, one has

lim inf
v→v̄

f �(x̄; v) ≤ lim inf
λ→0+ f �(x̄; v̄ + λz̄) ≤ d↑ f (x̄; v̄),

which proves the result because d0 f ≤ f �.
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We can now prove (25) for every directionally Lipschitzian lsc function. In the
proof we use a result (see [11]) related to the upper semicontinuity of the function
d0 f (·; v̄) for all v̄ ∈ X .

Proposition 5 If the lsc function f : X −→ R ∪ {+∞} is directionally Lipschitzian
at x̄ ∈ dom f, then

lim sup
x→ f x̄

inf
v→v̄

d− f (x; v) = d↑ f (x̄; v̄),

for all v̄ ∈ X.

Proof From [11] we know that for all x̄ ∈ dom f we have

lim sup
x→ f x̄

d0 f (x; v) ≤ d0 f (x̄; v) for all v ∈ X,

therefore

lim sup
x→ f x̄

d− f (x; v) ≤ f 0(x̄; v) for all v ∈ X.

Taking the lower limit lim inf
v→v̄

and using Proposition 4 we obtain

lim inf
v→v̄

lim sup
x→ f x̄

d− f (x; v) ≤ d↑ f (x̄; v̄),

which proves the result according to the inequality

lim sup
x→ f x̄

inf
v→v̄

d− f (x; v) ≤ lim inf
v→v̄

lim sup
x→ f x̄

d− f (x; v).

Another class of functions for which we have the equality (25) is the class of lsc
convex functions.

Proposition 6 If the lsc function f : X −→ R ∪ {+∞} is convex, then

lim sup
x→ f x̄

inf
v→v̄

d− f (x; v) = d↑ f (x̄; v̄),

for all x̄ ∈ dom f and v̄ ∈ X.

Proof Fix x̄ ∈ dom f and v̄ ∈ X . Take xk → f x̄ , vk → v̄, and α > 0. For every k,
there exists δk = δk(xk, vk) ≤ 1/k such that

d− f (xk; vk) ≤ t−1[ f (xk + tv′′) − f (xk)] + α

for all t ∈ ]0, δk] and v′′ ∈ B(vk, δk).
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Since f is convex, we have

δ−1
k [ f (xk + δkvk) − f (xk)] ≤ k[ f (xk + (1/k)vk) − f (xk)],

therefore d− f (xk; vk) ≤ α + k[ f (xk + (1/k)vk) − f (xk)]. Taking the upper limit
lim sup
k→+∞

and then the infimum inf
vk→v̄

, we obtain

inf
vk→v̄

lim sup
k→+∞

d− f (xk; vk) ≤ α + sup
x ′
k→ f x

tk→0+

inf
v′

k→v̄
lim sup
k→+∞

t−1
k

[
f
(
x ′

k + tkv
′
k

) − f
(
x ′

k

)]

= α + d↑ f (x̄; v̄).

Finally, we take the supremum sup
xk→ f x̄

in the left-hand side in order to obtain the

inequality that we need.

Corollary 2 If the lsc function f : X −→ R ∪ {+∞} is convex, then d− f is
epi-continuous, i.e.,

d− f (x̄; v̄) = lim sup
x→ f x̄

inf
v→v̄

d− f (x; v),

for all x̄ ∈ dom f and v̄ ∈ X.

Proof It is direct from Proposition 6 and the equality d− f (x̄; v̄) = d↑ f (x̄; v̄) for
convex functions.

If in the above results we put as lsc function the indicator function of a closed set,
we get the following results.

Corollary 3 ([6,10,18,24]) Let S ⊂ X be a closed set and x̄ ∈ S. Then,

(i) if dim X < +∞ one has

lim inf
x→S x̄

TB(S; x) = TC (S; x̄); (32)

(ii) if S is epi-Lipschitzian or convex, one has the same equality (32);
(iii) if X is reflexive, one has

lim inf
x→S x̄

T w
B (S; x) = TC (S; x̄). (33)

Proof It is similar to that of Corollary 1, using Propositions 2, 3, 5, and 6 and recalling
(4), (5), and (6).

Finally, we prove that the equality (25) holds for every lsc compactly
epi-Lipschitzian function. We point out that lsc functions on finite dimensional spaces
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and directionally Lipschitzian functions are compactly epi-Lipschitzian. Separate
proofs of (25) have been included for a better understanding and for readers who
are not interested in the heavy development of compactly epi-Lipschitzian functions
for that equality.

We begin with the definition of a new directional derivative directly related to a
tangent cone defined by Borwein and Strójwas in [5].

Definition 3 Let f : X −→ R ∪ {+∞} be a lsc function. For all x̄ ∈ dom f and
v̄ ∈ X we define

f K(x̄; v̄) := sup
δ>0

inf
K∈K(v̄)

inf
ε>0

sup
x∈B f (x̄,ε)

t∈]0,ε[

inf
v∈B[v̄,δ]∩K

t−1[ f (x + tv) − f (x)]

= sup
δ>0

inf
K⊂B(0,δ)
K compact

inf
ε>0

sup
x∈B f (x̄,ε)

t∈]0,ε[

inf
z∈K

t−1[ f (x + t v̄ + t z) − f (x)]

= sup
δ>0

inf
K⊂B(0,δ)
K compact

sup
xk→ f x̄

tk→0+

lim sup
k→+∞

inf
z∈K

t−1
k [ f (xk + tk v̄ + tk z) − f (xk)],

where K(v̄) = {K ⊂ X compact : v̄ ∈ K }.
Remark 1 From the above definition, we observe the following facts:

(i) d↑ f ≤ f K;
(ii) if dim X < +∞, then d↑ f = f K.

Following an analogous proof to that of Proposition 2 we obtain the following
result.

Proposition 7 For any lsc function f and for all x̄ ∈ dom f and v̄ ∈ X one has

lim sup
x→ f x̄

inf
v→v̄

d− f (x; v) ≤ f K(x̄; v̄). (34)

Proof We follow the proof of Proposition 2 taking any K ∈ K(v̄). Noting that
B[v̄, δ] ∩ K is compact, we change (27) by

∃ v1, . . . , vn in B[v̄, δ] such that B[v̄, δ] ∩ K ⊂
n⋃

i=1

B(vi , ξ(x, vi )).

If we take v̂ ∈ {vi : i = 1, . . . , n} such that d− f (x; v̂) = min{d− f (x; vi ) : i =
1, . . . , n} and η = min{ε, ξ(x, v1), . . . , ξ(x, vn)}, we obtain

inf
v∈B[v̄,δ] d− f (x; v) ≤ d− f (x; v̂)

≤ α + inf
v′∈B[v̄,δ]∩K

t−1[ f (x + tv′) − f (x)] ∀ t ∈ ]0, η]
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and hence

sup
x∈B f (x̄,ε)

inf
v∈B[v̄,δ] d−(x; v) ≤ α + sup

x ′∈B f (x̄,ε)

0<t≤ε

inf
v′∈B[v̄,δ]∩K

t−1[ f
(
x ′ + tv′) − f

(
x ′)],

for ε, δ > 0, α > 0, and K ∈ K(v̄) arbitrary, which proves the desired result.

Our objective now is to prove d↑ f = f K when f is compactly epi-Lipschitzian.
Recall that a lsc function f is compactly epi-Lipschitzian (see [16]) at x̄ ∈ dom f
provided there exists a compact set K ⊂ X such that

f �(x̄; K ) := lim sup
x→ f x̄

t→0+
b→0

inf
z∈K

t−1[ f (x + tb + t z) − f (x)] < +∞. (35)

In order to prove the equality d↑ f = f K for compactly epi-Lipschitzian functions,
we need the two lemmas below.

Lemma 2 Let f : X −→ R ∪ {+∞} be a lsc function, x̄ ∈ dom f , and v̄ ∈ X such
that d↑ f (x̄; v̄) < +∞. Then, for all ε > 0, xk → f x̄ , and tk → 0+ there exists
vk → v̄ such that

lim sup
k→+∞

t−1
k [ f (xk + tkvk) − f (xk)] < d↑ f (x̄; v̄) + ε, (36)

and xk + tkvk → f x̄ .

Proof The existence of vk → v̄ satisfying (36) is direct from the definition of d↑ f .
For k large enough one has

t−1
k [ f (xk + tkvk) − f (xk)] ≤ d↑ f (x̄; v̄) + ε,

hence f (xk + tkvk) ≤ tk(d↑ f (x̄; v̄) + ε) + f (xk) and we conclude due to the lower
semicontinuity of f that f (xk + tkvk) → f (x̄).

The statement of the second lemma is easily verified.

Lemma 3 Let f �(x̄; K ) be the quantity defined in (35). Then

f �(x̄; K ) < β ⇔ f �(x̄;αK ) < αβ for all α > 0.

Theorem 5 If the lsc function f is compactly epi-Lipschitzian at x̄ ∈ dom f, then

d↑ f (x̄; v̄) = f K(x̄; v̄) f or all v̄ ∈ X.

Proof Fix any v̄ ∈ dom d↑ f (x̄; ·). We only must prove d↑ f (x̄; v̄) ≥ f K(x̄; v̄). Let
β ∈ R, K a compact set in X , and R > 0 such that f �(x̄; K ) < β and K ⊂ B(0, R).

123



76 R. Correa et al.

Take δ, ε > 0, xk → f x̄ and tk → 0+. From Lemma 2 there exists vk → v̄ which
satisfies (36) and xk + tkvk → f x̄ . Since

inf
z∈(δ/2R)K

t−1
k [ f (xk + tkv + tk z) − f (xk)] = t−1

k [ f (xk + tkvk) − f (xk)]
+ inf

z∈(δ/2R)K
t−1
k [ f (xk + tkvk + tk z − tk(vk − v)) − f (xk + tkvk)],

taking the upper limit lim sup
k→+∞

and using Lemma 3, one obtains

lim sup
k→+∞

inf
z∈(δ/2R)K

t−1
k [ f (xk +tkv+tk z)− f (xk)] ≤ d↑ f (x̄; v̄)+ε+ f �(x̄; (δ/2R)K )

≤ d↑ f (x̄; v̄) + ε + (δ/2R)β,

for all xk → f x̄ and tk → 0+. Since (δ/2R)K ⊂ B(0, δ) we have

inf
K̃⊂B(0,δ)

K̃ compact

sup
xk→ f x̄

tk→0+

lim sup
k→+∞

inf
z∈K̃

t−1
k [ f (xk + tkv + tk z) − f (xk)]

≤ d↑ f (x̄; v̄) + ε + (δ/2R)β,

for δ, ε > 0 arbitrary, which proves the desired inequality.

Theorem 6 If the lsc function f is compactly epi-Lipschitzian at x̄ ∈ dom f , then

lim sup
x→ f x̄

inf
v→v̄

d− f (x; v) = d↑ f (x̄; v̄),

for all v̄ ∈ X.

Proof It is direct from Theorems 2 and 5, and Proposition 7.

In [5] Borwein and Strojwas introduced the following tangent cone of a closed set
S ⊂ X at x̄ ∈ S

F(S; x̄) :=
⋂

δ>0

⋃

ε>0

⋃

K⊂B(0,δ)
K compact

⋂

x∈B(x̄,ε)∩S
t∈]0,ε[

[
t−1(S − x) + K

]
.

We can observe almost directly that

�F(S;x̄)(v̄) = (�S)K(x̄; v̄) (37)

and

(�epi f )
K(x̄, f (x̄); v̄, s) = (�epi f K(x̄;·))(v̄, s), (38)

which allows us to obtain the following result given in [5].
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Corollary 4 ([5]) If the closed set S ⊂ X is compactly epi-Lipschitzian at x̄ ∈ S,
then

lim inf
x→S x̄

TB(S; x) = F(S; x̄) = TC (S; x̄).

Proof It is direct from (37) and (38) and Theorem 6. Recall that a lsc function is
compactly epi-Lipschitzian iff its epigraph is a compactly epi-Lipschitzian set.
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